

هدية كتاب الصفوة

جميع قوانين المنهج

الفصل الأول

	القانون	بيان	٩
1.	$Q = I \times t$	حساب كمية الكهربية	۱.
2.	$Q = n \times e$	حساب الشحنة الكلية	۲.
3.	$I = \frac{Q}{t} = \frac{n \cdot e}{t} = \upsilon \cdot e = \frac{V}{R}$ $V = \frac{W}{O} = IR$	حساب شدة التيار	۳.
4.	$V = \frac{W}{Q} = I R$	حساب فرق الجهد ٧	٤.
5.	V = I R	قانون أوم	٥.
6.	$W = VQ = P_w t = V It = I^2 Rt = \frac{V^2}{R} t$	حساب الطاقة الكهربية المستهلكة	٦.
7.	$P_w = \frac{W}{t} = VI = I^2R = \frac{V^2}{R}$	حساب القدرة الكهربية	.٧
8.	$A=\pi r^2=rac{m}{ ho ext{L}}$ حيث $ ho$ هي كثافة مادة الموصل و $ ho$ كتلته و $ ho$ نصف قطر مقطعه	لحساب مساحة المقطع السلك A	۸.
9.	$rac{R_1}{R_2} = rac{ ho_{e \; 1} \; \; L_1 \; A_2}{ ho_{e \; 2} \; \; L_2 \; A_1}$ وعند القارنة $R = ho_e rac{L}{A}$.4
10.	$rac{R_1}{R_2} = rac{ ho_{e_1} \; L_1 \; r_2^2}{ ho_{e_2} \; L_2 \; r_1^2}$ وعند القارنة $R = ho_e rac{L}{\pi r^2}$	لحساب مقاومة سلك	٠١٠.
11.	$rac{R_1}{R_2} = rac{ ho_{e \; 1} \; \; L^2_{\; 1} \; \; ho_1 \; \; m_2}{ ho_{e \; 2} \; \; L^2_{\; 2} \; \; ho_2 \; \; m_1}$ وعند القارنة $R = rac{ ho_e \; L^2 ho}{m}$.11
12.	$\rho_{\rm e} = \frac{RA}{L}$	لحساب المقاومة النوعية	.17
13.	$\sigma = \frac{1}{\rho e} = \frac{L}{RA}$	لحساب التوصيلية الكهربية	.18
14.	$rac{R_1}{R_2} = rac{L_1^2}{L_2^2}$ لی L_2 الی L_1 فتغیر طوله من	إذا أعيد تشكيل سلك	.18
	$rac{rac{R_1}{R_2}}{rac{r_2}{r_1^4}}=rac{r_2^4}{r_1^4}$ الى r_2 فتغير نصف قطره من r_1 الى	<u> </u>	

15.	$R_{eq} = R_1 + R_2 + R_3$		توصيل المقاومات على	.10
	$R_{eq} = NR$ تساویة	التوالى		
16.	$\frac{1}{R_{eq}} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_2}$	1 R ₃		.17
	$R_{eq} = \frac{R_1 2}{R_1 + R_2}$	توصيل المقاومات على التوازي		
	$R_{eq}=\frac{R_1}{}$	لعدة مقاومات متساوية		
17.	$I_1 = \frac{IR_2}{R_1 + R_2}$	$I_{e_{eta^3}} = rac{V_{eta_{e_{eta^8}}}}{R_{e_{eta^3}}} = rac{IR_{eta_{e_{eta^8}}}}{R_{e_{eta^3}}}$	حساب تيار الفرع	.1٧
18.	$\mathbf{V}=\mathbf{V}_{\mathrm{B}}-\mathbf{Ir}$ تفریغ $\mathbf{V}=\mathbf{V}_{\mathrm{B}}+\mathbf{Ir}$ شعن	$I = \frac{V_B}{R+r}$	قانون أوم للدوائر المغلقة	.18
19.	$I=rac{V_{B1}-V_{B2}}{R+r_1+r_2}$ متعاکسة	عدة أعمدة	.19	
20.	$\Sigma \mathbf{I} = 0$ التيارات الخارجة	الأول لكيرشوف	.44	
21.	$\Sigma \mathbf{V} = \Sigma \mathbf{I.R}$		الثانى لكيرشوف	.۲۱

الفصل الثاني

22.	$\phi_m = B A \sin\theta$	الفيض المفناطيسي	.77
23.	$B = \frac{\mu I}{2\pi d}$	B حول سلك	. ۲۳
24.	$B = \frac{\mu NI}{2r}$	B عند مرکز ملف دائری	. ۲٤
25.	$oldsymbol{B} = rac{\muI}{L}$ طول الملف ${f L}$ حيث	B عند نقطة على محور ملف حلزوني	. 70
26.	$N=rac{ ext{L llnll}}{2\pi r}=rac{ ext{llnll}}{360}$	عدد لفات الملف	.۲٦
27.	$F = B I L \sin \theta$	القوة المغناطيسية	. **
28.	$F = \frac{\mu I_1 I_2 L}{2\pi d}$	القوة المغناطيسية بين سلكين	۸۲.
29.	$\tau = B I A N Sin \theta$	عزم الازدواج المؤثر على ملف	. 49
30.	$ \mathbf{m}_{\mathbf{d}} = \frac{\tau}{\mathbf{B}\sin\theta} = IAN$	عزم ثنائي القطب	٠٣٠.
31.	انحساسية $=rac{ heta}{I}$	حساسية الجلفانومتر	.٣١

32.	$\frac{I_g}{I} = \frac{R_s}{R_g + R_s}$	$R_s = \frac{I_g R_g}{I - I_g}$	قيمة مجزئ التيار	.٣٢
33.	$\frac{V_{g}}{V} = \frac{R_{g}}{R_{g} + R_{m}}$	$R_m = \frac{v - v_g}{I_g}$	قيمة مضاعف الجهد	.٣٣
34.	$I_{g} = \frac{\text{emf}}{R_{g} + R_{v}}$	$\mathbf{R}_{ ext{v}}$ لإيجاد قيمة المقاومة العيارية		. 78
35.	$I = \frac{\text{emf}}{(R_g + R_v) + R_x}$	لإيجاد قيمة المقاومة المجهولة	في الأوميتر	.40
36.	$rac{I_{ ext{AlL}_i}}{I_{ ext{Apl}}} = rac{R_{ ext{plash}} + R_{\chi}}{R_{ ext{plash}}}$	عند المقارنة بين حالتين		.٣٦

الفصل الثالث

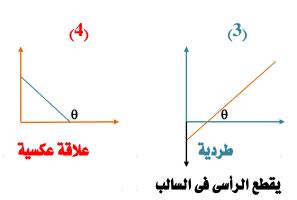
37.	$\mathbf{emf_{av}} = N \frac{\Delta \phi}{\Delta t} = N \frac{\Delta B A}{\Delta t}$.٣٧			
38.						
39.	${ m emf}_{ m av} = N rac{2 \phi}{rac{1}{2} T} = N rac{2 { m B A}}{rac{1}{2} T} = 4 { m B FAN}$ دار الملف نصف دورة أو قلب		.49			
40.	$Q R = N\Delta \phi \square$	الشحنة الكهربية المتولدة بالحث	.\$*			
41.	$\mathbf{emf}_2 = M \frac{\Delta I_1}{\Delta t} = N_2 \frac{\Delta B A_2}{\Delta t}$	حساب متوسط ق د ك بالحث الذاتي	.81			
42.	$\mathbf{emf}_{\mathbf{av}} = L \frac{\Delta \mathbf{I}}{\Delta t} = N \frac{\Delta \mathbf{B} \mathbf{A}}{\Delta t}$	حساب متوسط ق د ك بالحث الذاتي	. ٤٢			
43.	$L = \frac{emf_{\Delta t}}{\Delta I} = \frac{\mu A N^2}{I}$	معامل الحث الذاتي	.88			
44.	$\mathbf{emf} = \mathbf{B} \mathbf{L} \mathbf{V} \sin \mathbf{\theta}$	ق د ك اللحظية في سلك مستقيم	. £ £			
45.	$\omega = rac{ heta}{t} = rac{V}{r}$ السرعة الخطية $\omega = 2\pi f = rac{2\pi N}{t}$ نصف العرض	السرعة الزاوية ۞	.\$0			
46.	emf = A B ω N sin θ = emf _{max} sin = A B (2 × 3.14 f) N sin (2×180ft) = A B $\frac{V}{r}$ N sin θ = 2BLVN sin θ	ق د ك اللحظية في ملف الدينامو	.٤٦			
47.	$emf_{eff} = 0.707 \ emf_{max} \qquad \qquad I_{eff} = 0.707 \ I_{max}$	القيمة الفعالة للتيار المتردد	. ٤٧			
48.	$\eta = \frac{P_{wS}}{P_{wP}} = \frac{V_S I_S}{V_P I_P} $	كفاءة المحول الكهربي	۸٤.			
49.	$\eta = \frac{P_{wS1} + P_{wS2}}{P_{wP}} = \frac{V_{S1}I_{S1} + V_{S2}I_{S2}}{V_{P}I_{P}}$	محول له ملفان ثانویان	. ٤٩			
50.	$\frac{V_P}{V_S} \eta = \frac{N_P}{N_S} = \frac{I_S}{I_P} \square$	القانون العام للمحول	.0+			

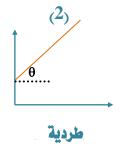
الفصل الرابع

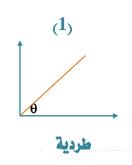
51.	$X_L =$	2 π f L	$X_{ m L}$ گیشما المثناه المثناء الم	٥١.
52.	$X_{L}=X_{L1}+X_{L2}+X_{L3}$	ملفات موصلة على التوالي	.07	
53.	$\frac{1}{X_{Lt}} = \frac{1}{X_{L1}} + \frac{1}{X_{L2}} + \frac{1}{X_{L3}}$	$\frac{1}{L_t} = \frac{1}{L_1} + \frac{1}{L_2} + \frac{1}{L_3}$	ملفات موصلة على التوازي	۰۵۳
54.	$\mathbf{X}_{\mathbf{C}}$ =	$=\frac{1}{2\pi f C}$	$ m X_{C}$ المفاعلة السعوية	.0\$
55.	$X_{C} = X_{C1} + X_{C2} + X_{C3}$	$\frac{1}{c_t} = \frac{1}{c_1} + \frac{1}{c_2} + \frac{1}{c_3}$	مكثفات موصلة على التوالى	.00
56.	$\frac{1}{X_{Ct}} = \frac{1}{X_{C1}} + \frac{1}{X_{C2}} + \frac{1}{X_{C3}}$	$C_t = C_1 + C_2 + C_3$	مكثفات موصلة على التوازي	.07
57.		$=\frac{Q}{V}$	حساب سعة المكثف	۷۵.
58.	${f Z} = \sqrt{R^2 + (X_L - X_C)^2}$ خاصة به	حساب المعاوقة الكلية	۸۵.	
59.	$\mathbf{V}=\sqrt{{v_R}^2}$ لخاصة به	$+ (V_L - V_C)^2$ و عند رفع أى عنصر من الدائرة تحذف القيمة ال	حساب فرق الجهد الكلى	.09
60.	$ an \ heta = rac{X_L - X_C}{R} = rac{V_L - V_C}{V_R}$ خاصة به	حساب زاوية الطور بين V, I	.7•	
61.	$\mathbf{I} = \frac{V_T}{Z} = \frac{V_R}{R} = \frac{V_L}{X_L} = \frac{V_C}{X_C}$	حساب شدة تيار متردد ₍ قيمة فعالة ₎	.71	
62.	$\mathbf{V_L} = \mathbf{I} \; \mathbf{Z_L}$ حيث $\mathbf{Z_L}$:	فرق الجهد بين طرفي ملف له مقاومة	.77	
63.	$egin{aligned} m{F_o} &= rac{1}{2\pi\sqrt{LC}} \ &rac{F_o}{F_o} &= \sqrt{rac{L_2C_2}{L_1C_1}} = \end{aligned}$	حساب التردد الرنيني	.7٣	

الفصل الخامس

64.	$C = \lambda \cdot \upsilon$	سرعة الموجة الكهرومغناطيسية	. 78
65.	$E = mc^2 = h\upsilon = \frac{hc}{\lambda}$	طاقة الفوتون	.70
66.	$m=rac{E}{c^2}=rac{hv}{c^2}=rac{h}{c\lambda}$	كتلة الفوتون المتحرك	.77
67.	$P_L = mC = \frac{E}{C} = \frac{hv}{C} = \frac{h}{\lambda}$	كمية تحرك الفوتون	.77
68.	$F = \frac{2P_{w}}{C} = 2 m c \phi_{L} = \frac{2hv}{c} \phi_{L}$	قوة الشعاع الكهرومغناطيسي	.٦٨
69.	$\mathbf{P}_{\mathbf{w}} = \boldsymbol{h} \boldsymbol{\upsilon} \boldsymbol{\emptyset}_{L}$	قدرة الشعاع الكهرومغناطيسي	. 79
70.	$\emptyset_L = \frac{P_w}{E} = \frac{P_w}{h \upsilon}$	حساب معدل سقوط الفوتونات	.٧•
71.	$rac{\lambda_{m1}}{\lambda_{m2}}=rac{T_2}{T_1}$	قانون فين	۷۱.
72.	$\mathbf{E}_{\mathbf{w}} = \mathbf{h}\mathbf{v}_{\mathbf{c}} = \frac{hc}{\lambda_c}$	5	.٧٢
73.	$\mathbf{K.E} = \mathbf{E} - \mathbf{E}_{w}$ $= \mathbf{h}v - \mathbf{h}v_{c} = \frac{hc}{\lambda} - \frac{hc}{\lambda_{c}}$	ظاهرة التأثير الكهروضوئي	.٧٣
74.	بعد التصادم $\left(m{K}.m{E}+rac{hc}{\lambda} ight)=\left(m{K}.m{E}+rac{hc}{\lambda} ight)$ قبل التصادم	تطبيق بقاء الطاقة على كومتون	٤٧.
75.	$\mathbf{e} \mathbf{V} = \frac{1}{2} \mathbf{m} \mathbf{v}^2$	الطاقة التي يكتسبها الإلكترون	۰۷۵




الرسم البياني


(۱) خطیة (۲) منحنیات

الرسوم البيانية في منهجنا نوعان:

أوراً الخطوط الببانبة

يقطع الرأسي في الموجب

يقطع الرأسي في الصفر

ولتحديد الشكل الموضح للعلاقت يجب اتباع مايلي

- (١) ضع العلاقة في الصورة
- (٢) حدد قيمة معامل س وهو م فيكون:
- نوع إشارة م محدد لنوع العلاقة.

Slope = $\Delta y/\Delta x = \tan \theta$

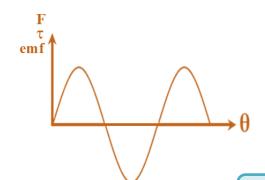
قيمة محددة لميل العلاقة

 θ هي الزاوية المحصورة بين الخط والمحور الأفقى

(٣) حدد الحد المطلق (الثابت) جو و يمثل الجزء المقطوع من المحور الرأسى ويكون للعلاقات الطردية كما يلى

قيمة ج = صفر يقطع الرأسى في الصفر شكل 1
 قيمة ج = موجبة يقطع الرأسى في الموجب شكل 2
 قيمة ج = سالبة يقطع الرأسي في السالب شكل 3

ثانيا المنحنيات


مندنی محکسی:

س × ص = ثابت

وفيها: - لا يمكن التعويض عن أحد المتغيرين بصفر.

- لا يوجد في العلاقة حد مطلق.

منحنی جیبی:

ويمثل العلاقة بين: الكميات الفيزيائية التي تحتوي على $\sin heta$ في قانونها على الرأس والزاوية θ أو الزمن t على الأفقى

كيف نرسم مسألث رسم بياني

ص = م س + ᆃ

اجعل القانون على الصورة

لو نفع يبقى الرسم البياني عط مستقيم وساعتها:

١_ حدد الميل من القانون ٧_ اعمل لنفسك رسم تجريبي ٣_ اقرأ المسألة كويس مرتين وبالذات المطلوب ثم نفذ الرسم الحقيقي في كراسة الإجابة

- a) بص لأكبر رقم على كل محور وقسم المربعات على أساست
- $x10^x$ خللى بالك من وحدات القياس والأرقام المضروبت (b)
 - . تبنب حساب المربع الواحد برقم 3 ومضاعفاتها (c)

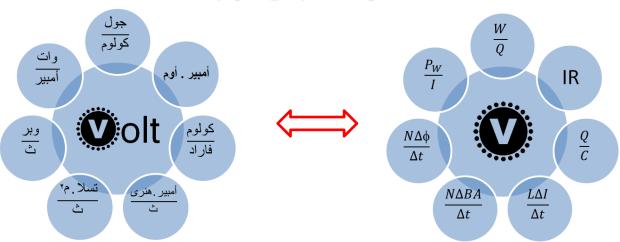
£ وأنت بتعمل النقاط على الرسم

حاول تعمل أول نقطة وآخر نقطة ونقطة ثالثة واضحة وسهلة في الرسم و ارسم الخط بالمسطرة واعمل بقية النقاط

والنقاط المجهولة في الجدول لازم تتعمل على الرسم وتوضحها بخط منقط ثقيل أوي بالقلم الرصاص

٥ وكمان لازم تحدد الميل بتاعل ع الرسم

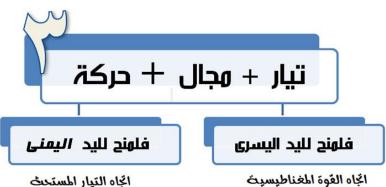
وتكون الأرقام بتاعته فرق الصادات وفرق السينات اللي مختارها في مثلث الميل على الرسم هي نفسها الى هتعوض عنها في الحل


افتكر العلاقات العكسيت والمنحنيات متجبلهمش ميل

﴿ وحدات قياس الكميات الفيزيائية ﴾

الكود	وحدة قياس	الكميه الفيزيائية	p
0.5	هيرتز	التردد	١
2	تاثيه	الزمن	۲
5	أمبير	شدة التيار الكهربي	٣
10	كولوم	كمية الشحنة الكهربية	ŧ
24	أوم	المقاومة الكهربية	٥
120	فولت	فرق الجهد الكهربي	٦
600	الموات	القدرة	٧
1200	جول	الشغل ـ الطاقة	٨
75	نيوتن	القوة	٩
16	متر	الطول	١٠
18.75	کجم	الكتلة	11
384	أوم.م	المقاومة النوعية	17
1/384	أوم- ١ <u>-</u> متر - ١	التوصيلة الكهربية	۱۳
3	وبر/أمبير.م	معامل نفاذية الوسط	١٤
240	وبر	الفيض المغناطيسي	10
15/16	تسلا	كثافة الفيض المغناطيسي	17
1280	نیوتن . م /تسلا	عزم ثنائي القطب	۱۷
48	هنري	معامل الحث	۱۸
1/12	فاراد	سعة المكثف	19
2400	جول . ث	ثابت بلانك	۲٠

تحويلات وحدات القياس


الديسي dec	X 10 ⁻¹			
السنتي c	X 10 ⁻²	ýs	x10 ³	الكيلو K
الميللي m	X 10 ⁻³	وحررة	x10 ⁶	الميجا М
الميكرو μ	X 10 ⁻⁶		x10 ⁹	G اجیجا
النانو n	X 10 ⁻⁹	can luō		
البيكرو P	X 10 ⁻¹²			
الفيمتو f	X 10 ⁻¹⁵			

تعويلات مهمة

$Cm x 10^{-2} = m$	$mm \times 10^{-3} = m$	
$Cm^2 x 10^{-4} = m^2$	$mm^2 x 10^{-6} = m^2$	
$Cm^3 \times 10^{-6} = m^3$	$mm^3 x 10^{-9} = m^3$	
${f A}^{ m o}$ الأنجستروم ${f x}10^{-10}={f m}$		

اتجاه التيار المستحث المتولد في سلك يتحرك في مجال مغناطيسي

المؤثرة على سلك بمربت تيار وموضوع في مجال

أنواع القلوب

أهمية القلب الحديدى :

يزيد معامل النفاذية فيعمل علي تجميع وتركيز خطوط الفيض

المحول	المحرك	الجلفانومتر	الجهاز
شرائح معزولة	شرائح معزولة	مصمت	شكل القلب
قلب ساكن يقطع مجال متغير	قلب متحرك يقطع مجال منتظم	قلب ساكن يقطع مجال منتظم	حالته
تتولد	تتولد	لا تتولد	تيارات دوامية

		$\boldsymbol{ heta}$		\boldsymbol{V}	2 C
W)	=	_	=	_	$=2\pi f$
		t		r	_,,

يدور ملف بسرعة

الاسم	الرمز	القيمة _ وحدة القياس	
السرعة الزاوية	ω	9000 deg/s	$\pi = 180$
		157 R/s	$\pi = \frac{22}{7}$
التردد	F	50 cy/s	دورة / ث
السرعة الخطية	V	m/s	م / ث

المحصورة بين الملف و للمجال

 $\tau = BIAN \sin \theta$ $emf = AB\omega N \sin \theta$

قَيْمِكُ وَهُمِي وَثِيْلِ لِكُولُ الْأَلْثُ // الْجَالُ

المحصورة بين السلك والمجال

 $\phi_m = \mathbf{B} \ \mathbf{A} \ \mathbf{sin} \ \boldsymbol{\theta}$

 $F = B I L \sin \theta$

قيمة وظمى فندما يكون الساك ١ الجال

المحصورة بين اتجاة السرعة و المجال

 \Box emf = BLV sin θ

قيمة وظمى مناط يتحرك الساك للباك

الشرط	النتيجة	التفاعل	الظاهرة
υ>υ ₂	ينطلق الإلكترون من السطح	يسقط علي سطح معدني	تاثير كهروضوئي
كبر طاقة ph الساقط (جاما، اكس)	ترداد سرعته یغیر اتجاهه و ترداد سرعته ph	يسقط علي إلكترون حر	<u> گال</u> امرة <u>کومتو</u> ق

الاستخدام	الخصائص	العنصر	
صنع أسلاك التوصيلفي أنود أنبوبة كولج	 جيد التوصيل للحراة والكهرباء 	النحاس Cu	1
 كإطار يلف علية ملف الجلفانومتر مؤشر لأجهزة القياس التناظرية 	 کثافته صغیرة (خفیف) مادة غیر مغناطیسیة 	ALالومينيوم	٢
فتيلة المصباحمادة هدف في أنبوبة كولدج	ذو مقاومة نوعية كبيرةدرجة انصهاره عاليةعدد ذري كبير	تنجستن W	۳
 كقلب في أجهزة القياس في المحرك والمحول والموتور 	 کبر معامل نفاذیة الوسط یجمع ویرکز خطوط الفیض 	حدید مطاوع	٤
 كقلب للمحول الكهربي 	 کبر مقاومته النوعیة سهولة حرکة جزیئاته المغناطیسیة 	حدید مطاوع سیلیکون	٥
 في صنع سلك الأميتر الحراري 	 كبر المقاومة النوعية كبر معامل التمدد الحراري 	الإيريديوم البلاتيني	٦

		Se Constitution of the Con
PO	يتساوك	الإتزاق
عزم الازدواج المغناطيسي في الملف	عزم الازدواج الناشئ عن اللي	في الجلفانومتر
الطاقة الحرارية المتولدة في السلك بسبب مرور التيار الكهربي فيه	الطاقة الحرارية المفقودة للوسط المحيط بالإشعاع	في الأميتر الحراري

الفوئون		
يتغير	الاتجاه	
تقل	الطاقة	
ثابتث	السرعة	
تقل	كمية التحرك	
تقل	الكتلة	
يزداد	الحجم	
يقل	التردد	
يزداد	الطول الموجى	

الإلكترون		
يتغير	الاتجاه	
تزداد	الطاقة	
تزداد	السرعة	
تزداد	كمية التحرك	
ثابتث	الكتلة	
ثابت	الحجم	
يقل	الطول الموجى المصاحب	

تحويلات الطاقة

التحولات	الجهاز - الظاهرة	P
مغناطيسية – كهربية – حرارية	التيارات الدوامية	1
كهربية – مغناطيسية – كهربية – حرارية	أفران الحث	2
میکانیکیة – کهربیة	الدينامو	3
كهربية — ميكانيكية	الموتور	4
كهربية — ميكانيكية — كهرومغناطيسية	أنبوبة كولدج	5
كهرومغناطيسية — ميكانيكية — كهربية	التأثير الكهروضوئي	6
كهربية — ميكانيكية	الجلفانومتر	7
كهربية – حرارية	المقاومة	8
كهربية – مغناطيسية	الملف	9
كهربية — مغناطيسية _ ضوئية	مصباح الفلورسنت	10
کهربیة – ﴿ ضوئیة + حراریة ﴾	ليزر الهليوم نيون	n
كهربية – حرارية – ميكانيكية	الأميتر الحراري	12
كهربية — مغناطيسية — كهربية	المحول المثالي	13
كهربية – (مغناطيسية + ميكانيكية + حرارية) – كهربية	المحول الغير مثالي	14
كهرومغناطيسية _ كهربية _ مغناطيسية _ صوتية	أجهزة الاستقبال (الراديو)	15
كهربية – حرارية – حركية – كهربية	أنبوبة الكاثود	16

D.J. J.	[[<u>[</u> [[[]]]]]]	اليَّمِيْنِ الْحَيَّارِيَّ
ـ مع الألياف الضوئية في المناظير الطبية ـ في علاج حالات قصر وطول النظر ـ في علاج انفصال شبكية العين	تصوير الكسور والشروخ	في الأجنة و الأورام

البصمة

والمرثث المادية

الطيف الخطى

دالة الشغل

التردد الحرج

نوع المادة

معامل نفاذية الوسط

المقاومة النوعية

التوصيلية الكهربية

الموامل التي تتوقف عليها	الكمية الشير يائية	الثاثين الذي تحسب به الكمية
	المقاومة التعميية	
	اطقاومة النوعية	
	التوصيلية التصيية	
	كثافة الفيض المغناطيس	
	معامل نفاذية الوسط	
	عزم ثنائه القطب	
	حساسية الجلفانومتر	
	معامل الحث المتبادل	
	معامل الحث الذاتي	
	uæŏ ldties	
	دالة الشغل	
	التردد الحريج	